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ABSTRACT

The always-convergent iterative method (AC) of Ioup
and the reblurring/mirror image iterative procedure (RB)
of Kawata and Ichioka and LaCoste are comparsd to the
least squares technique (LS) for low signal-to-noise
ratio (SNR) seismic data. To study the resolution as
well as the mean squared error (MSE), a spike train with
systematically varying separations is employed. After it
is convolved with a wavelet, noisy test cases are
generated for SNR's from 1.1 to 14.8 and all three
deconvolution methods are applied. The MSE for each case
i{s calculated. Then the average MSE {s obtained and its
dependence on SNR 1s given. The AC and RB give lower MSE
than the LS. Sample results are shown for the noisy
data, the AC noise removal, and all three deconvolution
techniques. The optimum {teration nuamber 1is plotted
versus SNR for RB, AC noise removal, AC deconvolution,
and the sum of the last two.

INTRODUCTION

It is well established that deconvelution, especlally
spiking deconvolution, can amplify noiss. See, for
example, the discussion given by Icup and Ioup (1941).
Therefore selsmic data of low signal-to-noise ratio (SNR)
are difficult to deconvolve. Two Llterative techniques of
deconvolutlion, the always-convergent iterative technique
(AC) of Ioup (1981), and the reblurring/mirror image
iterative procedure (RB) of Kawata and Ichioka (1980) and
LaCoste (1982), are less sensitive to noise amplification
than the standard least squares approach (LS) (Robinson,
1980; Robinson and Treitel, 1980). In order to show this
explicitly and examine the performance of all three
deconvolution téchniques for noisy data, we construct a
very difficult test after Powe et al. (1985). We alsa
follow the optimization methodology of Amini et al.
(1986). To test the performance of the three techniques,
an examination Is made of the mean squared error (MSE)
after deconvolution as a function of the SNR. Many data
sets are averaged at each SNR to obtain these results.
Since the MSE does not give a complete picture of the
relative performance, individual data sets are also
examined after deconvolution by the three approaches.
Some detalls of the use of the iterative techniques are
also discussed.

METHODOLOGY

To use the {terative techniques for spiking
deconvolution, the wavelet must first be extracted. For
our model, we assume that this has already been done and
we use the minimum phase wavelet shown in Figure 1(a).
Since the wavelet is minimum phase, the application of
the LS method 1s stralghtforward. To examine the limits
of resolution, a variable separation spike train, shovn
in Figure 1(b), 1is adopted. Because the wavelet is 46
samples long and the separations of the spikes vary from
two sample intervals up to seven sample intervals, this
is a severe test. The difficulty of rtesolving the
{ndividual spikes may be seen from the resulting selsaic
trace, shown in Figure 1l{(c).
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Fig. 1. (a) Wavelet, (b) Spike Train, (c) Convolution of
(a) and (b).

In order to apply the {iterative approaches and
accomplish the comparison of ths techniques, wa use the
statiscical simulation methodology developed by Wright
(1980), Wright and Ioup (1981), Ioup and Ioup (1981),
Leclere (1984), leclere et al. (1985), and Amini et al.
(1986). Noise {s acded to the data based on a scale
factor which produces noise sets having a SNR
approximately equal to the one of interest. Recognizing
the very large variability possible in the spectral
characteristics of rthe nolse from one noise set to
another, we have chosen to work with time-domain
generated nolse vhose statistics are specified by a given
density function, in this case, a Gaussian. This i{s a
not a limitacion. Any density function could be chosen.
The low SNR's used in this study range from three to 40.
The SNR definition used here is the peak signal value
divided by the standard deviation of the noise.
Alternately, & common definition is cthe standard
deviation of the signal divided by the standard deviation
of the noise. For our data the SNR by the latter
definition is 1/2.7 times the former, so the SNR range is
then 1.1 to 14.8. Twenty to fifty noisy test cases at
each SNR sample point are generated for statistical
reliability. We then give the average results for each
deconvolution method.

The reblurring iterations are applied as a single set
of {tarations. The number of {terations required is
generally large. The always-convergent {terations are in
tvo parts, a nolse removal 1iteration followed by a
deconvolution {teration. Optimfzations for these
iterations for seismic data have been given by Amini et
al. (1986).

The LS filter length {s 999, long enough so that the
deconvolution is not degraded by having too short a
filter.

RESULTS

In Figures 2(a) and (c) we show a noisy data sample
for two intermediate SNR's, 10 (3.7) and 30 (1l1),
respectively. Figure 2(b) is the result of applying the
AC noise removsl iterations to the data of Figure 2(a),
vhile Figure 2(d) is the corresponding result for Figure

2(c). The smoothing effect is apparenc.
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Fig. 2. (a) SNR 10 data, (b) AC smoothed (a), (c) SNR 30
daca, (d) AC smoothed (c).

Figura 3 shows a deconvolutfan result for a SNR of 30
(11) for all three sethods. In Figure 3(a) the AC result
is given, while the RB 1s I{n Figure 3}(b) and the LS is in
Figure 3(c). While the resolution of the LS technique ts
comparable to or slightly better than the {teracive
techniques, the LS deconvolved data are affected by nolse
to a significantly larger extent. The noise level as a
percentage of peak height is greater. This is reflected
in the calculated MSE to be discussed subsequently.

Thers are only alight differences between the two
{terative resules.
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Fig. 3. SNR 30 data deconvolution (a) AC, (b) RB, (<)
1s.

A test case with SNR ~ 10 (3.7) is deconvolved to
give the results shown in Figure 4. The AC, RB, and LS
deconvolutions ares in Figures 4(a), (b), and (c),
respectively. Again the resolution of the LS method is
good, but the noise (s so large thac it is difficult to
distinguish the true peaks from false ones due to noise.
The resolution of the i{terative techniques 1s decreased
due to the increased noise level, but all peaks, whether
resolved or not, rise above the nolse. The standard
trade-off in deconvoluion {s resolution versus nolse
amplification. For the iterativs techniques the optimum
iteration number has been selected to minimize the MSE.
Any measure could have been used. In particular, one
which gives more resclurion and more noise amplification
may be desirable in some circumstances (Andrews and Hunt,
1977; Hunt, 1978).
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Fig. 4. SNR 10 data deconvolution (a) AC, (b) RB, (c)
Ls.

Figure 5 presents tha average MSE after deconvolution
versus the SNR. The lower curves give the MSE for the
{cerative techniques, while the upper curve shows the 1s
MSE. The larger MSE for the LS corresponds to the larger
noise relative to the sigral {n the LS deconvolved data.
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Fig. 5. MSE after devonvolution; upper curve, LS; lower
curves, AC and RB.

In Figure 6 the average numbers of iterations used at
each SNR are sgummarized. Although the {terative
techniques are now available as equivalent filters for
rapid application to seilsmic data, this study was domne
with the standard iterative approach. Investigations
using cthe 1latter are {mportant for the correct
application of the equivalent filters. Since the R3B
iteration numbers are large compared to the AC, they are
divided by ten to give Figure 6(a). The averags AC noise
removal iteration numbers are shown in Figure 6(b). 1In
Figure 6(c) the average numbers of deconvolution
iterations for the AC are shown. Finally, Figure 6(d)
gives the sum of the AC noise removal and deconvelution
fterations, to show the total needed. The AC uses fewer
{terations than the RB, except at the lowest SNR. These
numbers come from optimizing all the noisy test cases at
a given SNR and taking the average of the results.
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Fig. 6. Optimum average iteration number (a) RB
nurber/10, (b) AC noise removal, (c) AC deconvolution,

CONCLUSION

When the wavelet has been determined, {terative
deconvolution techniques are a valuable alternative to LS
for the deconvolution of seismic data. They offer
control over noise amplification and they can be applied
quickly (as single equivalent filters).
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